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a b s t r a c t

Nonequilibrium heating in multi-carrier systems is captured by the high-order effects in thermal lagging.
Following the general formulation for the N-carrier system, a three-carrier system follows, aiming toward
extracting the intrinsic behavior of ultrafast thermalization and relaxation among different carriers. For
the first time to our knowledge, it shows that energy coupling among three carriers gives rise to the new
s2

T-effect, which also results in a flux-precedence type of heat flow. Nondimensional analysis is made to
extract the dominating parameters, including the ratio between the two phase lags expressed in terms of
two heat-capacity and two energy-coupling-factor ratios. In the numerical example, the method of
Laplace transform is used to solve the heat equation with nonlinear effects of both s2

T and s2
q . Thermal

lagging with the additional effect of s2
T further elevates the field temperature as compared to the s2

q-effect
alone.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction system in metals. Phase change in wicked heat pipes, moreover, of-
Energy exchange between electrons and phonons in metals pro-
vides the best example in describing nonequilibrium heating dur-
ing the ultrafast transient [1–6]. In times comparable to the
thermalization and relaxation times of electrons and phonons,
which are in the range from a few to several tens of picoseconds,
heat continuously flows from hot electrons to cold phonons
through mutual collisions. Consequently, electron temperature
continuously decreases whereas phonon temperature continu-
ously increases until thermal equilibrium is reached. Intensity of
heat flow during nonequilibrium heating is proportional to the
temperature difference between electrons and phonons. The pro-
portional constant is termed electron–phonon coupling factor,
which is a new thermophysical property in microscale heat trans-
fer. The same concept has been extended to model pulsed heating
on amorphous media [6] and nonequilibrium heat transport in por-
ous media [7]. In place of electrons and phonons, energy coupling
between the solid and fluid/gaseous phases was described in the
same way. The thermalization and relaxation times for slow mate-
rials, such as lightly packed copper spheres or rough carbon sur-
faces [6,8], can reach several tenths of a millisecond due to the
low-conducting phases involved in the assemblies. Transient times
on the order of 10�4 s, therefore, are considered to be ultrafast be-
cause of the pronounced thermalization and relaxation behaviors
observed in the sub-millisecond domain.

Nonequilibrium heating in porous media [7] already involves a
more complicated system than the two-carrier (electron–phonon)
ll rights reserved.

: +1 573 884 5090.
ten involves nonequilibrium heating/energy dissipation among the
solid wick, liquid, and vapor phases [9]. As extension is made to
medical applications employing femtosecond lasers [10], complex-
ities of nonequilibrium heating further evolves due to involvement
of multiple carriers in biomedical systems, including hard/soft tis-
sues (proteins), water, and minerals at least. The ways in which
thermal energy is distributed among different carriers, as well as
the characteristic times dictating the intrinsic behaviors of non-
equilibrium heating, plays a dominant role in assuring the success
of femtosecond-laser technologies.

This work generalizes the two-carrier system into the N-carrier
system in describing the physical mechanisms of nonequilibrium
heating. Particular emphasis will be placed on extracting the relaxa-
tion and thermalization times that characterize the lagging behavior
during the ultrafast transition. For systems involving three carriers,
specifically, harmonic decomposition is applied to obtain a single
energy equation that unveils the intrinsic behavior of thermal lag-
ging. In addition to the second-order effect in s2

q , thermal lagging
in a three-carrier system gives rise to an additional effect of s2

T, ren-
dering a flux-precedence type of heat flow that only existed in theory
prior to the present analysis. A nondimensional analysis is performed to
extract the dominating parameters during the ultrafast transient.
The two phase lags, as well as their ratio, are derived and represented
in terms of heat-capacity and energy-coupling-factor ratios.

2. N-Carrier system

Although thermophysical properties would be temperature
dependent in general, particularly in complicated physical systems
undergoing a wide temperature change, they will be assumed
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Nomenclature

C volumetric heat capacity (J m�3 K�1)
Gi energy coupling factor between carrier i and j

(W m�3 K�1)
k thermal conductivity (W m�1 K�1)
m summation index
N total number of carriers
p parameter of Laplace transform
q heat flux vector (W m�2)
T temperature (K)

Greek symbols
b nondimensional time
c real axis of Bromwich contour
h nondimensional temperature

s phase lag (s)
n nondimensional space

Subscripts and superscripts
e electrons
i carrier i
l lattices
q heat flux
Re real part
T temperature
_X oX/ot
�X Laplace transform of X
»2 Laplacian
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constant for the time being to characterize the fundamental behav-
ior of energy transport. Fig. 1 shows the energy exchanges among
dissimilar energy carriers, which are assumed proportional to their
temperature differences as that assumed during electron–phonon
coupling [1–5]. The energy equations governing the N carriers are

C1
oT1

ot
¼ k1r2T1 �

XN

i¼2

G1iðT1 � TiÞ;

Cm
oTm

ot
¼ kmr2Tm þ

Xm�1

j¼1

GjmðTj � TmÞ

�
XN

i¼mþ1

GmiðTm � TiÞ; m ¼ 2;3; . . . ; ðN � 1Þ;

CN
oTN

ot
¼ kNr2TN þ

XN�1

i¼1

GiNðTi � TNÞ:

ð1Þ

All N carriers are assumed stationary in the system. To describe the
advection effects, all derivatives with respect to time on the left-
hand side of Eq. (1) are replaced by the total derivatives. The
summations with negative/positive signs in the front represent
the energy loss/gain to/from other carriers. The first summation in
the second expression, for example, represents the volumetric en-
ergy density received by carrier m, whereas the second summation
in the same equation represents the energy density released from
carrier m. Nonequilibrium heating is reflected by the temperature
differences in Eq. (1). After thermalization where thermal equilib-
rium is achieved among N carriers, all G-terms in Eq. (1) diminish
and Fourier diffusion is recovered.

Eq. (1) represents N coupled equations for N unknowns, which
are to be solved for T1 to TN subject to the appropriate initial (N)
and boundary (2N) conditions describing the physical system.
T1

G12 (T1 –T2)

T2
G2i (T2 –Ti)

TN

Ti

GiN (Ti –TN)

GN1 (TN –T1)

Fig. 1. Energy exchange in a system with N carriers.
The thermalization time at which Ti = Tj, with i, j = 1,2, . . ., N but
i – j, is an obvious focus in deriving the solutions since it describes
the finite time required for some/all carriers to achieve thermal
equilibrium.

2.1. Three-carrier system

In the case of a two-carrier system, exemplified by metals with
free electrons (e) and periodic lattices (l), the first and third equa-
tions in Eq. (1) reduce to

C1
oT1

ot
¼ k1r2T1 � G12ðT1 � T2Þ;

C2
oT2

ot
¼ k2r2T2 þ G12ðT1 � T2Þ:

ð2Þ

Replacing ‘‘1” by ‘‘e” (for electrons) and ‘‘2” by ‘‘l” (for lattices), Eq.
(2) reduces to the parabolic two-step heating model in microscale
heat transfer [5]. Neglecting the effect of conduction in thin metal
lattices, k2 � kl = 0, Eq. (2) further reduces to the energy equation
for a femtosecond-laser heated microfilm [3–6]. In passing, note
that Eq. (2) can be combined to yield a single energy equation for
either the electron (1) or lattice (2) temperature [5,6]:

r2T þ C2

G12

� �
o

ot
ðr2TÞ ¼ C1 þ C2

k1

� �
oT
ot
þ C1C2

k1G12

� �
o2T
ot2 ð3Þ

Both T1 and T2 are governed by the same equation, with the mixed-
derivative term, o(r2T)/ot on the left-hand side, and the wave term,
o2T/ot2 on the right-hand side, describing the ultrafast thermaliza-
tion and relaxation between electrons and lattices. Even though
Eq. (2) bears the familiar appearance of Fourier diffusion, in other
words, the energy coupling terms (led by G12) result in the thermal-
ization time (C2/G12) and the relaxation time (C1C2/[G12(C1 + C2)]) that
are two intrinsic time constants characterizing the ultrafast re-
sponse in thin metal films.

Eq. (1) can be degenerated into a system with three carriers,
i.e., N = 3. Examples include all composites with three constitu-
ents, interfacial heat transport involving two materials in con-
tact and the interstitial gas, phase change in wicked heat
pipes involving liquid, vapor and solid phase, on-chip biopro-
cesses involving separation of protein from water and minerals,
and burned skin removal by femtosecond lasers that displays
mixtures of healthy skins, burned tissues, and charring materi-
als on the surface. The number of carriers involved in these sys-
tems could further evolve should nonequilibrium heating be
tackled in each phase, such as electrons and phonons in the
metallic solid phase. For systems involving three carriers, Eq.
(1) reduces to
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C1
oT1

ot
¼ k1r2T1 � G12ðT1 � T2Þ � G13ðT1 � T3Þ;

C2
oT2

ot
¼ k2r2T2 þ G12ðT1 � T2Þ � G23ðT2 � T3Þ;

C3
oT3

ot
¼ k3r2T3 þ G13ðT1 � T3Þ þ G23ðT2 � T3Þ:

ð4Þ

There are efficient numerical algorithms solving this type of cou-
pled differential equations [11]. The fundamental behavior charac-
terizing the process of nonequilibrium heating, parallel the
thermalization and relaxation times in Eq. (3) that characterize
the two-carrier system, however, is what we are mainly concerned
with in this work. The characteristic times defining nonequilibrium
heating belong to the transient response, in time. For simplifying
the elimination process, therefore, heat transport in a one-dimen-
sional system will be assumed from now on to avoid unnecessary
complications from the space operators. The Laplacian operator
(r2) in Eq. (4), therefore, is replaced by o2/ox2.

2.2. Harmonic decomposition

Eq. (4) involves more than a simple Fourier diffusion as re-
flected in its first glance. To extract the characteristic times govern-
ing the energy exchange during nonequilibrium heating, we
manage to eliminate two temperatures from the existing three un-
knowns T1, T2, and T3. Eliminating two unknowns from them to
render a single energy equation like Eq. (3), however, is not as
straightforward as that in a two-carrier system [5,6]. A generic pro-
cedure is to introduce the harmonic analysis by assuming

Tiðx; tÞ ¼ CiðtÞ sinðnpxÞ; i ¼ 1;2;3: ð5Þ

Substituting Eq. (5) into Eq. (4), the coupled PDEs are reduced to
coupled ODEs:

C1
dC1

dt
¼ �ðn2p2k1 þ G12 þ G13ÞC1 þ G12C2 þ G13C3;

C2
dC2

dt
¼ G12C1 � ðn2p2k2 þ G12 þ G23ÞC2 þ G23C3;

C3
dC3

dt
¼ G13C1 þ G23C2 � ðn2p2k3 þ G13 þ G23ÞC3:

ð6Þ

First, C3 is expressed in terms of C1, C2, and _C2 from the second
expression in Eq. (6). Substituting the result into the remaining
two equations in Eq. (6), it results in two equations (remained cou-
pled) for two unknowns, C1 and C2. Both equations contain a com-
mon term of _C1. Eliminating _C1 from these two equations, second,
C1 can be expressed in terms of C2, _C2 and €C2. The resulting
expression for C1 can then be substituted into either one of the
two equations (containing C1 and C2) for obtaining the single en-
ergy equation governing C2. The result is
ðC1C2C3Þ
d3C2

dt3 þ ½C2C3ðG12 þ G13Þ þ C1C3ðG12 þ G23Þ

þ C1C2ðG13 þ G23Þ þ ðC1C2k3 þ C2C3k1 þ C1C3k2Þn2p2�d
2C2

dt2

þ frðC1 þ C2 þ C3ÞðG13G23 þ G12G13 þ G12G23Þ
þ fsC1½G13k2 þ G12k3 þ G23ðk2 þ k3Þ�
þ C2½G23k1 þ G12k3 þ G13ðk1 þ k3Þ�
þ C3½G23k1 þ G13k2 þ G12ðk1 þ k2Þ�gsðnpÞ2

þ ðC1k2k3 þ C2k1k3 þ C3k1k2ÞðnpÞ4gr
dC2

dt
þ ftðk1 þ k2 þ k3Þ½G13G23 þ G12G13 þ G12G23�ðnpÞ2

þ ½G12k3ðk1 þ k2Þ þ G13k2ðk1 þ k3Þ þ G23k1ðk2 þ k3Þ�ðnpÞ4

þ k1k2k3ðnpÞ6gtC2 ¼ 0 ð7Þ
where the paired parentheses are labeled for easier recognition.
Multiplying Eq. (7) throughout by sin(npx) and recovering the par-
tial derivatives in accordance with Eq. (5),
o6T2

ox6 ¼�ðnpÞ6C2ðtÞsinðnpxÞ; o4T2

ox4 ¼ðnpÞ4C2ðtÞsinðnpxÞ;

o2T2

ox2 ¼�ðnpÞ2C2ðtÞsinðnpxÞ; o5T2

ox4ot
¼ðnpÞ4 _C2ðtÞsinðnpxÞ;

o4T2

ox2ot2¼�ðnpÞ2 €C2ðtÞsinðnpxÞ; o3T2

ox2ot
¼�ðnpÞ2 _C2ðtÞsinðnpxÞ;

oT2

ot
¼ _C2ðtÞsinðnpxÞ; o2T2

ot2 ¼ €C2ðtÞsinðnpxÞ; o3T2

ot3 ¼C
v

2ðtÞsinðnpxÞ;

ð8Þ
The single energy equation governing T2 is
ðC1C2C3Þ
o3T2

ot3 þ ½C2C3ðG12 þ G13Þ þ C1C3ðG12 þ G23Þ

þ C1C2ðG13 þ G23Þ�
o2T2

ot2

þ ðC1 þ C2 þ C3ÞðG13G23 þ G12G13 þ G12G23Þ
oT2

ot

¼ ðk1 þ k2 þ k3Þ½G13G23 þ G12G13 þ G12G23�
o2T2

ox2

� ½G12k3ðk1 þ k2Þ þ G13k2ðk1 þ k3Þ þ G23k1ðk2 þ k3Þ�
o4T2

ox4

þ ðk1k2k3Þ
o6T2

ox6 þ C1½G13k2 þ G12k3 þ G23ðk2 þ k3Þ�f

þ C2½G23k1 þ G12k3 þ G13ðk1 þ k3Þ� þ C3 G23k1 þ G13k2½

þ G12ðk1 þ k2Þ�g
o3T2

ox2ot
þ ðC1C2k3 þ C2C3k1 þ C1C3k2Þ

o4T2

ox2ot2

�ðC1k2k3 þ C2k1k3 þ C3k1k2Þ
o5T2

ox4ot
ð9Þ
The same procedure can be applied to yield a single energy equa-
tion for T1 or T3. They have exactly the same form as Eq. (9) due
to symmetry in exchanging thermal energy. Buried in the coupled
diffusion equations shown by Eq. (4), clearly, heat transport in
each carrier involves anomalous diffusion containing numerous
high-order effects in space. The sixth-order derivative results
from three second-order derivatives in Eq. (4). The mixed-deriva-
tive terms with respect to both space (x) and time (t), most
important, may imply the characteristic times that define the
transient response. Harmonic decomposition used here to elimi-
nate multiple temperatures (T1 and T3) from the coupled PDEs
(Eq. (4)) emphasizes the sinusoidal responses of temperatures in
space (Eq. (5)). A recent work employed the direct operator
method for elimination [12], which results in the same expres-
sion for T2 as shown in Eq. (9).

To extract the characteristic times governing the fast tran-
sient described by Eq. (9), we assume carrier 1 and carrier 3
are so small that effect of conduction is negligible in them. This
is the same assumption as that of the thin metal lattices made
in the microscopic two-step model [3–6]. Mathematically, k1

and k3 are set to zero in Eq. (4). Eq. (9) then becomes
o2T2

ox2 þ D21
o3T2

otox2 þ D22
o4T2

ot2ox2
¼ D1

oT2

ot

þ D2
o2T2

ot2 þ D3
o3T2

ot3
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where

D21 ¼
C1ðG13 þ G23Þ þ C3ðG12 þ G13Þ

G13G23 þ G12G13 þ G12G23
;

D22 ¼
C1C3

G13G23 þ G12G13 þ G12G23
;

D1 ¼
C1 þ C2 þ C3

k2
;

D2 ¼
C1C2ðG13 þ G23Þ þ C1C3ðG12 þ G23Þ þ C2C3ðG12 þ G13Þ

k2ðG13G23 þ G12G13 þ G12G23Þ
;

D3 ¼
C1C2C3

k2ðG13G23 þ G12G13 þ G12G23Þ
ðk1 ¼ 0 and k3 ¼ 0Þ ð10Þ

Except for slight changes in the coefficients, exactly the same equa-
tion results should the conduction effect be neglected in carriers 1
and 2 (k1 = 0 and k2 = 0) or in carriers 2 and 3 (k2 = 0 and k3 = 0):

D21 ¼
C1ðG12þG23ÞþC2ðG12þG13Þ

G13G23þG12G13þG12G23
; D22 ¼

C1C2

G13G23þG12G13þG12G23
;

D1 ¼
C1þC2þC3

k3
; D2 ¼

C1C2ðG13þG23ÞþC1C3ðG12þG23ÞþC2C3ðG12þG13Þ
k3ðG13G23þG12G13þG12G23Þ

;

D3 ¼
C1C2C3

k3ðG13G23þG12G13þG12G23Þ
ðk1 ¼0 and k2 ¼0Þ;

D21 ¼
C2ðG13þG23ÞþC3ðG12þG23Þ

G13G23þG12G13þG12G23
; D22 ¼

C2C3

G13G23þG12G13þG12G23
;

D1 ¼
C1þC2þC3

k1
; D2 ¼

C1C2ðG13þG23ÞþC1C3ðG12þG23ÞþC2C3ðG12þG13Þ
k1ðG13G23þG12G13þG12G23Þ

;

D3 ¼
C1C2C3

k1ðG13G23þG12G13þG12G23Þ
ðk2 ¼0 and k3 ¼0Þ:

ð11Þ

The corresponding equations for T1 and T3 in each case, once again,
remain exactly the same due to symmetry of energy exchange
among three carriers. The mixed-derivative terms, o3T/otox2 and
o4T/ot2ox2 on the left-hand side and the wave (o2T/ot2) and jerk
(o3T/ot3) terms on the right-hand side of Eq. (10), therefore, are
common, which are the salient features characterizing nonequilib-
rium heat transport in the three-carrier system.

In passing, note that Eq. (1), including the special case of N = 3 in
Eq. (4), could be viewed as a multi-step model since it is general-
ized from the two-step model for the case of two carriers (Eq.
(2)). For problems involving known heating in one carrier, such
as heated wicks in heat pipes that are cooled by the liquid and va-
por phases, the energy generation term needs to be incorporated
correspondingly in Eq. (4). For laser processing of materials involv-
ing multi-carriers, such as removal of burned skins by femtosecond
lasers, a generic form describing the energy absorption rates in
each carrier would work the best for a universal treatment. Differ-
ent heating rates involved in each carrier are implemented in Eq.
(4), with different heating rates adjusted through the use of differ-
ent heating intensity in each carrier. Effect of volumetric heating
will give rise to apparent heating in addition to the real heat source
applied to the carriers [6], with all terms remaining the same as
those in Eq. (10). Effect of volumetric heating, in other words, will
not alter the characteristics of the energy equation, which are dic-
tated by the derivatives of the highest orders in the energy equa-
tion. Such an effect has been excluded in this work in order for a
better focus on the thermalization and relaxation behaviors with-
out unnecessary complications from the heat source term.

3. Nonlinear behavior of thermal lagging

The dual-phase-lag model has been shown admissible within the
frameworks of nonequilibrium irreversible thermodynamics [6,13],
Boltzmann transport equation [14], and Galilean invariance princi-
ple in relativity [15]. The mixed derivate term in Eq. (10), o3T/otox2,
and the wave (o2T/ot2) and jerk (o3T/ot3) terms have already been
captured in the framework of thermal lagging accounting for the
liner effects ofsT andsq as well as the effect ofs2

q [5,6]. The mixed der-
ivate term (o3T/otox2) effectively destroys the sharp wavefront intro-
duced by the wave effect (o2T/ot2) in heat propagation, rendering a
response of high-order diffusion whose temperature may be several
times higher than that predicted by classical Fourier diffusion. Effect
of s2

q further introduces the jerk term (o3T/ot3) in the energy equa-
tion, bringing back thermal waves that may propagate many times
faster than the classical Cattaneo–Vernotte (CV) thermal wave.
Entering the arena of microscale heat transfer, in other words, there
exists an alternating sequence of diffusion and thermal waves, as a
result of shortening the response time, which can not be covered
by either classical Fourier diffusion or CV-wave alone [6].

There exists a fourth-order, mixed-derivative term in Eq. (10),
o4T/ot2ox2, which has never appeared in the development of the
dual-phase-lag (DPL) model. To understand its physical signifi-
cance, we expand the constitutive relation with general delays by
retaining the second-order effects in sT and sq:

qðx; t þ sqÞ ¼ �krTðx; t þ sTÞ

) qðx; tÞ þ sq
oq
ot
ðx; tÞ þ

s2
q

2
o2q
ot2 ðx; tÞ

ffi �k rTðx; tÞ þ sT
o

ot
rTðx; tÞ þ s2

T

2
o2

ot2rTðx; tÞ
" #

ð12Þ

The phase lags (both sT and sq), in other words, are assumed small
in comparison with the process time (t) such that the third-order
terms and higher (in sT and sq) are negligible. Note also that all
quantities in Eq. (12) now occur at the same instant of time after
the Taylor series expansion. Eliminating the heat flux vector from
the energy equation,

C
oT
ot
ðx; tÞ ¼ �r � qðx; tÞ; ð13Þ

by first taking divergence over Eq. (12) and then substituting Eq.
(13) into the result, the energy equation expressed in terms of tem-
perature reads

r2T þ sT
o

ot
ðr2TÞ þ s2

T

2
o2

ot2 ðr
2TÞ ¼ 1

a
oT
ot
þ sq

a
o2T
ot2 þ

s2
q

2a
o3T
ot3 ð14Þ

In the one-dimensional case with r2 replaced by o2/ox2, Eq. (14) is
reduced to

o2T
ox2 þ sT

o3T
otox2 þ

s2
T

2
o4T

ot2ox2
¼ 1

a
oT
ot
þ sq

a
o2T
ot2 þ

s2
q

2a
o3T
ot3 ; ð15Þ

which has exactly the same form as Eq. (10) for the three-carrier
system, with T representing T1, T2, or T3 in accordance with the coef-
ficients Ds defined in Eqs. (10) and (11). While the linear effects of
sT and sq contribute to the mixed-derivative (o3T/otox2) and the
wave (o2T/ot2) terms, the nonlinear effects of s2

T and s2
q contribute

to the jerk term (o3T/ot3) and the forth-order, mixed-derivative term
(o4T/ot2ox2). Complicated energy exchanges among the three energy
carriers, obviously, have been nicely lumped into the linear and sec-
ond-order effects of sT and sq.

Identical form of Eqs. (10) and (15) facilitates determination of
the values of a, sT, and sq. In the case of k1 = 0 and k3 = 0, direct
comparisons of the coefficients of the diffusion term (oT/ot, for
a), the mixed-derivate term (o3T/otox2, for sT), and the wave term
(o2T/ot2, for sq) give

a¼ k2

C1þC2þC3
; sT¼

C1ðG13þG23ÞþC3ðG12þG13Þ
G13G23þG12G13þG12G23

� CG

G2

� �
�O

C
G

� �

sq ¼
C1C2ðG13þG23ÞþC1C3ðG12þG23ÞþC2C3ðG12þG13Þ

ðC1þC2þC3ÞðG13G23þG12G13þG12G23Þ
� C2G

CG2

" #
�O

C
G

� �

ð16Þ
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Estimated from the order of magnitudes, it can readily be seen that
sT and sq are of the order of (C/G). The coefficients of s2

T and s2
q , from

the fourth-order, mixed-derivative term (o4T/ot2ox2) and the jerk
term (o3T/ot3) in Eqs. (10) and (15), result in

s2
T¼

2C1C3

G13G23þG12G13þG12G23
� C2

G2

" #
�O

C
G

� �2

s2
q¼

2C1C2C3

ðC1þC2þC3ÞðG13G23þG12G13þG12G23Þ
� C3

CG2

" #
�O

C
G

� �2

ð17Þ

Eq. (17) indicates that s2
T and s2

q are indeed of the order of (C/G)2.
With sT and sq shown in Eq. (16), in other words, the fourth-order,
mixed-derivative term (o4T/ot2ox2) and the jerk term (o3T/ot3) are
indeed their second-order effects.

4. Numerical example

Even though the various orders of sT and sq have been mathe-
matically incorporated in the general framework of thermal lag-
ging [6], physically, this is the first time that the s2

T-effect is
shown to exit in a physical system. Presence of the new mixed-
derivative term, o4T/ot2ox2, in the heat equation necessitates a de-
tailed analysis for understanding its effects on the nonequilibrium
temperature with lagging behavior.

The problem that is able to reveal all fundamental behaviors of
thermal lagging with minimal mathematical complication may be
a semi-infinite solid whose initial temperature is kept uniform
throughout, at T0, and is disturbed from a stationary state:

T ¼ T0;
oT
ot
¼ 0; and

o2T
ot2 ¼ 0 as t ¼ 0 ð18Þ

Note that three initial conditions are needed since Eq. (15) involves
the third-order derivative with respect to time, the jerk term result-
ing from the s2

q-effect. Temperature at the surface x = 0 is suddenly
raised to Tw, whereas the thermal field remains undisturbed at a
distance sufficiently far away from the heated boundary:

T ¼ Tw at x ¼ 0; T ! T0 as x!1 ð19Þ

Aiming at nonequilibrium heating during the early-time transient
with t � sq, we introduce the following nondimensional variables:

n ¼ xffiffiffiffiffiffiffiffiasq
p ; b ¼ t

sq
; h ¼ T � T0

Tw � T0
; z ¼ sT

sq
: ð20Þ

Eqs. (15), (18), and (19) become

o2h

on2 þ z
o3h

obon2 þ
z2

2
o4h

ob2on2 ¼
oh
ob
þ o2h

ob2 þ
1
2

o3h

ob3 ;

h ¼ 0;
oh
ob
¼ 0; and

o2h

ob2 ¼ 0 as b ¼ 0;

h ¼ 1 at n ¼ 0; h! 0 as n!1:

ð21Þ

The Laplace transform solution to Eq. (21) can readily be obtained

hðn; pÞ ¼
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2þ2pþp2Þ

2þ2ðpzÞþðpzÞ2

q
n

h i
p

ð22Þ

Resulting from the infinite physical domain and simple initial/
boundary conditions, the temperature response depends on the ra-
tio of sT to sq, z = sT/sq, rather than the individual values of sT and sq.
In terms of volumetric heat capacities and energy coupling factors
of the three energy carriers, referring to Eq. (16),

z ¼
1þ C2

C1
þ C3

C1

� �
C3
C1

� �
1þ G13

G12

� �
þ G13

G12
þ G23

G12

� �h i
C2
C1

� �
C3
C1

� �
1þ G13

G12

� �
þ C3

C1

� �
1þ G23

G12

� �
þ C2

C1

� �
G13
G12
þ G23

G12

� � ð23Þ
The value of z, clearly, depends on two heat-capacity ratios and two
energy-coupling-factor ratios. Laplace inversion of Eq. (22) can be
performed by the Riemann sum approximation for the Bromwich
contour integral [5,6,16]:

hðn; bÞ ffi ecb

b
1
2

�hðn; p ¼ cÞ þ Re
XN

n¼1

�hðn; p ¼ cþ inp
b
Þð�1Þn

" #
ð24Þ

where the value of c is chosen to be 4.7/b for faster convergence of
the numerical summation.

In presence of thermal lagging, the flux-precedence type of heat
flow (sq < sT or z > 1) distinguishes itself from the gradient-prece-
dence type of heat flow (sT < sq or z < 1). The case of z = 1, or sT = sq,
implies a simultaneous response between the heat flux vector and
the temperature gradient, for which Eq. (15) is reduced to the clas-
sical diffusion equation employing the Fourier’s law. Since the en-
ergy coupling factors are positive definite, namely G12 > 0, G23 > 0,
and G13 > 0, it is important to note that the z-value shown by Eq.
(23) always renders a flux-precedence type of heat flow because
z is always greater than unity (z > 1). This can be seen by the differ-
ence between the numerator and the denominator of Eq. (23):

1þC2

C1
þC3

C1

� �
C3

C1

� �
1þG13

G12

� �
þ G13

G12
þG23

G12

� �� �	 


� C2

C1

� �
C3

C1

� �
1þG13

G12

� �
þ C3

C1

� �
1þG23

G12

� �
þ C2

C1

� �
G13

G12
þG23

G12

� �	 


¼ G23

G12

� �
þ C3

C1

� �2

þ G13

G12

� �
1þC3

C1

� �2

>0: ð25Þ

In studying the lagging temperature represented by Eqs. (22) and
(24), therefore, we will restrict our studies to the case of z > 1.

The z-surface shown by Eq. (23) is characterized by four param-
eters: (G13/G12), (G23/G12), (C2/C1), and (C3/C1). Fig. 2 shows the vari-
ations of z with respect to (G13/G12) and (G23/G12) for (C2/C1) < 1 and
(C3/C1) > 1 (Fig. 2(a)) and (C2/C1) > 1 and (C3/C1) < 1 (Fig. 2(b)), as
well as the variations with respect to (C2/C1) and (C3/C1) for (G13/
G12) < 1 and (G23/G12) > 1 (Fig. 2(c)) and (G13/G12) > 1 and (G23/
G12) < 1 (Fig. 2(d)). The value of z increases (decreases) as the value
of G13/G12 (G23/G12) increases (decreases), as shown in Fig. 2(a). As
the value of G13/G12 (G23/G12) approaches infinity, however, the va-
lue of z approaches the limit of 31 (1.19231). A similar trend can be
observed in Fig. 2(b), where the value of z increases with both val-
ues of (G13/G12) and (G23/G12). The limiting values of z in this case
are 1.24 (1.19231) as the value of G13/G12 (G23/G12) approaches
infinity. Fig. 2(c) shows that the value of z decreases as the value
of (C2/C1) increases. A stationary value of z in (C3/C1), however, ex-
ists in the regime with (C2/C1) < 1.

Eqs. (15) and (21), and hence the solution shown by Eq. (22), re-
cover the cases of Fourier diffusion (sT = sq or z = 1), CV-wave (sq-
effect alone), linearized DPL (effects of both sT and sq), and T-wave
(effects of sT, sq, and s2

q) as the high-order derivatives describing
the high-rate effects are gradually extracted in correspondence.
From low-order to high-order models describing the various ef-
fects of sT and sq that are active/diminishing in different domains
of time [17], the corresponding solutions of �ðn; pÞ are

Fourier diffusion :
o

2h

on2¼
oh
ob
) hðn;pÞ¼

exp � ffiffiffi
p
p

n
� �

p
;

CV-wave :
o

2h

on2¼
oh
ob
þ o

2h

ob2 ) hðn;pÞ¼
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1þpÞ

p
n

� �
p

;

Linearized DPL :
o

2h

on2þ z
o

3h

obon2¼
oh
ob
þ o

2h

ob2) hðn;pÞ¼
exp �

ffiffiffiffiffiffiffiffiffiffiffi
pð1þpÞ
1þpz

q
n

h i
p

;

T-wave :
o2h

on2þz
o3h

obon2¼
oh
ob
þ o2h

ob2þ
1
2

o3h

ob3) hðn;pÞ¼
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2þ2pþp2Þ

2ð1þpzÞ

q
n

h i
p

:

ð26Þ



Fig. 2. Variations of z as a function of G13/G12 and G23/G12 for (a) C2/C1 = 0.2 and C3/C1 = 5, (b) C2/C1 = 5 and C3/C1 = 0.2, and that of C2/C1 and C3/C1 for (c) G13/G12 = 0.2 and G23/
G12 = 5, and (d) G13/G12 = 5 and G23/G12 = 0.2.
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With such high-rate effects covered in the same framework of ther-
mal lagging, DPL is able to reveal the ways in which a certain effect
evolves/reduces to another as transient time continuously short-
ened/lengthened. These expressions are used in Eq. (24) when com-
pared with the expression containing the s2

T effect shown by Eq.
(22).

Fig. 3 shows the temperature distributions during the ultra-
fast transient predicted by the various model, at a representa-
tive instant of time of b = 1, or t = sq. The value of z is taken
to be five, sT = 5sq, as compared to sT ffi 0sq for most metals.
In the heat affected zone where a significant temperature rise
prevails, the temperature level increases with the degrees of
thermal lagging measured by the orders of sT and sq. The linear
DPL model with sT- and sq-effect, for example, results in higher
temperatures than those predicted by Fourier’s law (no lagging)
and CV-wave model (sq-effect only). As the nonlinear effects of
s2

T and s2
q gradually enter the Taylor series expansion shown in

Eq. (12), showing that the transient time (t) is of the same or-
ders of magnitude as s2

T and s2
q in the physical response, the T-

wave (containing effects of sT, sq, and s2
q) and the DPL model

with additional effect of s2
T further elevate temperatures in

the heat affected zone. A sharp wavefront, which separates
the heat affected zone from the thermally undisturbed zone
in the physical domain, is attributed to the phase lag of the
heat flux vector, sq. In the presence of the linear effect of sq,
the classical CV-wave, the wavefront is located at x ¼

ffiffiffiffiffiffiffiffiffiffi
a=sq

p
t

or n = b according to the nondimensional scheme introduced
in Eq. (20). In the case of T-wave where the effect of s2

q is fur-
ther incorporated during the ultrafast transient, location of the
wavefront is at x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2asTÞ=sq

p
t or n ¼

ffiffiffiffiffi
2z
p

b. As b = 1 (t = sq)
and z = 5, locations of the thermal wavefront are at n = 1 (CV-
wave) and n =

p
10 ffi 3.16 (T-wave), respectively. As shown in

Fig. 3, the method of Riemann sum approximation for the La-
place inversion captures these locations very well.

Tangling of the response curves of T-wave (with s2
q-effect) and

DPL (with the additional s2
T-effect) models shown in Fig. 3 results

from the chosen value of z. As the value of z increases, exemplified
by z = 10 in Fig. 4, the two curves separate with a wider margin,
and the s2

T-effect in thermal lagging clearly yields a higher temper-
ature than the s2

q-effect alone (T-wave). The location of the wave-
front is advanced to nT ¼

ffiffiffiffiffi
2z
p

b ffi 4:47 in the case of z = 10, which
is again well captured by the method of the Riemann sum
approximation.

Lagging behavior is a salient feature during the ultrafast tran-
sient with t comparable to sT and sq. As time lengthens, as shown
by b = 20 in Fig. 5, thermal wavefronts (CV- and T-wave) disappear
and all responses start to collapse onto the same curve. At z = 5, the
response curve becomes indistinguishable as b increases over 30.



Fig. 3. Comparisons of Fourier diffusion (sT = sq), CV-wave (effect of sq), linear DPL (effect of sT and sq), T-wave (s2
q -effect), and DPL (effect of s2

T and s2
q ).

Fig. 4. Effect of z(sT/sq) on T-wave (effect of s2
q ) and DPL (effect of both s2

T and s2
q): b = 1.
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5. Conclusion

The microscopic two-step model has been generalized to de-
scribe nonequilibrium heating in systems containing multiple en-
ergy carriers. The thermalization time (sT) and relaxation time
(sq) are extracted from the resulting energy equation, showing that
the increasing number of energy carriers result in high-order ef-
fects in sT and sq. For the case of three carriers, for instance, ther-
mal lagging with second-order effects of sT and sq will be present
during the nonequilibrium response. More generally, the method
of deduction has shown that nonequilibrium heating in a system
with N carriers will result in thermal lagging of the order up to
sT

(N�1) and sq
(N�1). Within the context of energy exchange propor-

tional to the temperature difference, as that described in the two-
step model, in other words, the phase lags (time constants) charac-
terizing the lagging behavior remain to be sT and sq, regardless of
the number of energy carriers involved in the system.

It is essential to continue identifying physical systems that
may display a combined behavior of ultrafast thermalization
and relaxation as the various orders in sT and sq are introduced
in the general framework of thermal lagging. The s2
T and s2

q effects
resulting from the case of three energy carriers, as explored in
this work, should shed light on the fundamental understandings
of nonequilibrium heating in more complicated systems, such as
in multi-constituent composites, interfacial heat transfer, wicked
heat pipes (for high heat removal) and/or biomedical/biological
tissues when processed by ultrafast lasers. As compared to the
T-wave with the s2

q-effect alone, the second-order effect of in
thermalization (sT) further elevates the temperature level, now
becoming 3–4 times higher than that predicted by Fourier diffu-
sion without accounting for the effect of thermal lagging. The T-
wave (containing the s2

q-effect) propagates faster than the
conventional CV-wave (effect of sq). In presence of the additional
s2

T-effect, however, the wavefront is destroyed and heat propaga-
tion by high-order diffusion is recovered. In absence of a heat
source, the lagging behavior is characterized by the ratio of sT

to sq, which has been expressed in terms of two heat-capacity
and two energy-coupling-factor ratios for the three-carrier sys-
tem. The ratio of sT to sq is shown to be greater than unity, ren-
dering a flux-precedence type of heat flow (sq < sT) in physically



Fig. 5. Diminution of wavefronts (for CV- and T-wave) and coalesce of all models at long times: b = 20.
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admissible systems where both heat capacities and energy cou-
pling factors are positive definite.

Real physical systems, particularly the microscopic biological
and biomedical systems, may involve a number of species/carriers
in transporting heat. Energy absorption of ultrafast lasers by hard/
soft tissues through complicated body fluids, where another set of
energy carriers may also be involved, for example, may involve
more than three carriers in accomplishing the entire process of
treatments by ultrafast lasers. As the number of energy carriers
continuously increases, following the initial effort as presented in
this work, an important task to be accomplished in the next phase
will be on the rise of the orders of sT and sq in thermal lagging as a
result of increasing the numbers of energy carriers. The resulting
physical response will be complicated, evidenced by the various
mixed- and time-derivatives in the energy equation describing
thermal lagging. We will leave this subject in future
communications.
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